Multiplication tables - the 144 facts I need to know by the end of Y4

1×1	1×2	1×3	1×4	1×5	1×6	1×7	1×8	1×9	1×10	1×11	1×12
2×1	2×2	2×3	2×4	2×5	2×6	2×7	2×8	2×9	2×10	2×11	2×12
3×1	3×2	3×3	3×4	3×5	3×6	3×7	3×8	3×9	3×10	3×11	3×12
4×1	4×2	4×3	4×4	4×5	4×6	4×7	4×8	4×9	4×10	4×11	4×12
5×1	5×2	5×3	5×4	5×5	5×6	5×7	5×8	5×9	5×10	5×11	5×12
6×1	6×2	6×3	6×4	6×5	6×6	6×7	6×8	6×9	6×10	6×11	6×12
7×1	7×2	7×3	7×4	7×5	7×6	7×7	7×8	7×9	7×10	7×11	7×12
8×1	8×2	8×3	8×4	8×5	8×6	8×7	8×8	8×9	8×10	8×11	8×12
9×1	9×2	9×3	9×4	9×5	9×6	9×7	9×8	9×9	9×10	9×11	9×12
10×1	10×2	10×3	10×4	10×5	10×6	10×7	10×8	10×9	10×10	10×11	$10 \times$
11×1	11×2	11×3	11×4	11×5	11×6	11×7	11×8	11×9	11×10	11×11	$11 \times$ 12
12×1	12×2	12×3	12×4	12×5	12×6	12×7	12×8	12×9	12×10	12×11	12×12

Roman numerals to 100

$\mathrm{I}=1$	$V=5$		$X=10$		$L=50 \quad C$		$C=100$		
1	II	III	IV	V	VI	VII	VIII	IX	X
XI	XII	XIII	XIV	XV	XVI	XVII	XVIII	XIX	XX
XXI	XXII	XXIII	XXIV	XXV	XXVI	XXVII	XXVIII	XXIX	XXX
XXXI	XXXII	XXXIII	XXXIV	XXXV	XXXVI	XXXVII	XXXVIII	XXXIX	XL
XLI	XLII	XLIII	XLIV	XLV	XLVI	XLVII	XLVIII	XLIX	L
LI	LII	LIII	LIV	LV	LVI	LVII	LVIII	LIX	LX
LXI	LXII	LXIII	LXIV	LXV	LXVI	LXVII	LXVIII	LXIX	LXX
LXXI	LXXII	LXXIII	LXXIV	LXXV	LXXVI	LXXVII	LXXVIII	LXXIX	LXXX
LXXXI	LXXXII	LXXXIII	LXXXIV	LXXXV	LXXXVI	LXXXVII	LXXXVIII	LXXXIX	XC
XCI	XCII	XCIII	XCIV	XCV	XCVI	XCVII	XCVIII	XCIX	C

Interpreting bar models

18		
6	6	6

18					
3	3	3	3	3	3

$6 \times 3=18$	$18 \div 6=3$	$\frac{1}{6}$ of $18=3$
$3 \times 6=18$	$18 \div 3=6$	$\frac{1}{3}$ of $18=6$

Scaling number facts by 100

$6+9=15$ so 6 hundred +9 hundred $=15$ hundred
15 hundred $=1,500$

Equivalence

I know that 10 ones are equal to 1 ten
I know that 10 tens are equal to 1 hundred
I know that 10 hundreds are equal to 1 thousand

Thousands
Hundreds
Tens Ones

Placing 4-digit numbers on a number line and identifying previous and next multiples of 1,000.

	\downarrow		\downarrow			\downarrow		\downarrow		
Γ	1	1	1	1	1	1	1	1	1	1
0	1,000	2,000	3,000	4,000	5,000	6,000	7,000	8,000	9,000	10,000

Fractions

1 Whole											
$\frac{1}{2}$						$\frac{1}{2}$					
$\frac{1}{3}$				$\frac{1}{3}$				$\frac{1}{3}$			
$\frac{1}{4}$			$\frac{1}{4}$			$\frac{1}{4}$			$\frac{1}{4}$		
	$\frac{1}{5}$	$\frac{1}{5}$			$\frac{1}{5}$		$\frac{1}{5}$			$\frac{1}{5}$	
		$\frac{1}{6}$		$\frac{1}{6}$		$\frac{1}{6}$	$\frac{1}{6}$			$\frac{1}{6}$	
$\frac{1}{8}$	$\frac{1}{8}$		$\frac{1}{8}$		8	$\frac{1}{8}$	$\frac{1}{8}$		$\frac{1}{8}$		$\frac{1}{8}$
$\frac{1}{10}$	$\frac{1}{10}$			$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$				$\frac{1}{10}$
$\frac{1}{12}$		$\frac{1}{12}$									

$\frac{1}{2}$ is equal to $\frac{2}{4}, \frac{3}{6}, \frac{4}{8}, \frac{5}{10}, \frac{6}{12}$ and any other fraction where the numerator is double the denominator e.g. $\frac{50}{100}$.
$\frac{1}{4}$ is equal to $\frac{2}{8}, \frac{3}{12}, \frac{4}{16}$ and any other fraction where the numerator 4 times smaller than the denominator e.g. $\frac{25}{100}$.

Decimal equivalence

$\frac{1}{2}=0.5$	$\frac{1}{4}=0.25$	$\frac{3}{4}=0.75$		$\frac{1}{100}=0.01$
$\frac{1}{10}=0.1$	$\frac{2}{10}=0.2$	$\frac{3}{10}=0.3$	$\frac{4}{10}=0.4$	$\frac{5}{10}=0.5$
$\frac{6}{10}=0.6$	$\frac{7}{10}=0.7$	$\frac{8}{10}=0.8$	$\frac{9}{10}=0.9$	$\frac{10}{10}=1$
$\frac{10}{100}=0.1$	$\frac{17}{100}=0.17$	$\frac{23}{100}=0.23$	$\frac{90}{100}=0.9$	$\frac{100}{100}=1$

Multiplying and dividing by 10 and 100

Measure - perimeter and area

Perimeter is the distance around a shape.

$7 \mathrm{~cm} \mathrm{~cm}_{5}^{5 \mathrm{~cm}}$| $7 \mathrm{~cm}+5 \mathrm{~cm}+4 \mathrm{~cm}=16 \mathrm{~cm}$ |
| :--- |
| The perimeter of the triangle |
| is 16 cm |

Area is the amount of space taken up by a 2d shape. You multiply the width by the height.
$4 \mathrm{~cm} \times 3 \mathrm{~cm}=12 \mathrm{~cm}$
The area of the rectangle is $12 \mathrm{~cm}^{2}$

Telling the time

The big hand tells me information about the minutes. The small hand tells me information about	5 minutes past 2		50 minutes past 2
$\begin{aligned} & 60 \text { seconds }=1 \text { minute } \\ & 60 \text { minutes }=1 \text { hour } \\ & 24 \text { hours }=1 \text { day } \end{aligned}$	6 minutes past 5	27 minutes past 4	This is the same as 10 minutes to 3.

Digital clocks

HH:MM

07:12 twelve minutes past 7 (morning)
19:12 twelve minutes past 7 (afternoon)
03:32 thirty-two minutes past 3 (morning)
15:32 thirty-two minutes past 3 (afternoon)

Geometry - types of triangle

Types of triangle				
Equilateral triangle: all three sides	Isosceles triangle: two sides and		Equilateral triangle: all three sides	Isosceles triangle
:---	:---			
and all three		and all three angles equal		

Scalene triangle: all three sides and all three angles different sizes

 with a right-angle. Can be isosceles or scalene.

Angles

Acute angle $=$ less than 90 degrees
Right angle = exactly 90 degrees
Obtuse angle = greater than 90 but less than 180 degrees

