Addition and subtraction facts

$\mathbf{+}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathbf{0}$	$0+0$	$0+1$	$0+2$	$0+3$	$0+4$	$0+5$	$0+6$	$0+7$	$0+8$	$0+9$	$0+10$
$\mathbf{1}$	$1+0$	$1+1$	$1+2$	$1+3$	$1+4$	$1+5$	$1+6$	$1+7$	$1+8$	$1+9$	$1+10$
$\mathbf{2}$	$2+0$	$2+1$	$2+2$	$2+3$	$2+4$	$2+5$	$2+6$	$2+7$	$2+8$	$2+9$	$2+10$
$\mathbf{3}$	$3+0$	$3+1$	$3+2$	$3+3$	$3+4$	$3+5$	$3+6$	$3+7$	$3+8$	$3+9$	$3+10$
$\mathbf{4}$	$4+0$	$4+1$	$4+2$	$4+3$	$4+4$	$4+5$	$4+6$	$4+7$	$4+8$	$4+9$	$4+10$
$\mathbf{5}$	$5+0$	$5+1$	$5+2$	$5+3$	$5+4$	$5+5$	$5+6$	$5+7$	$5+8$	$5+9$	$5+10$
$\mathbf{6}$	$6+0$	$6+1$	$6+2$	$6+3$	$6+4$	$6+5$	$6+6$	$6+7$	$6+8$	$6+9$	$6+10$
$\mathbf{7}$	$7+0$	$7+1$	$7+2$	$7+3$	$7+4$	$7+5$	$7+6$	$7+7$	$7+8$	$7+9$	$7+10$
$\mathbf{8}$	$8+0$	$8+1$	$8+2$	$8+3$	$8+4$	$8+5$	$8+6$	$8+7$	$8+8$	$8+9$	$8+10$
$\mathbf{9}$	$9+0$	$9+\mathbf{1}$	$9+2$	$9+3$	$9+4$	$9+5$	$9+6$	$9+7$	$9+8$	$9+9$	$9+10$
$\mathbf{1 0}$	$10+0$	$10+1$	$10+2$	$10+3$	$10+4$	$10+5$	$10+6$	$10+7$	$10+8$	$10+9$	$10+10$

Multiplication tables - the 144 facts I need to know by the end of Y4

1×1	1×2	1×3	1×4	1×5	1×6	1×7	1×8	1×9	1×10	1×11	1×12
2×1	2×2	2×3	2×4	2×5	2×6	2×7	2×8	2×9	2×10	2×11	2×12
3×1	3×2	3×3	3×4	3×5	3×6	3×7	3×8	3×9	3×10	3×11	3×12
4×1	4×2	4×3	4×4	4×5	4×6	4×7	4×8	4×9	4×10	4×11	4×12
5×1	5×2	5×3	5×4	5×5	5×6	5×7	5×8	5×9	5×10	5×11	5×12
6×1	6×2	6×3	6×4	6×5	6×6	6×7	6×8	6×9	6×10	6×11	6×12
7×1	7×2	7×3	7×4	7×5	7×6	7×7	7×8	7×9	7×10	7×11	7×12
8×1	8×2	8×3	8×4	8×5	8×6	8×7	8×8	8×9	8×10	8×11	8×12
9×1	9×2	9×3	9×4	9×5	9×6	9×7	9×8	9×9	9×10	9×11	9×12
10×1	10×2	10×3	10×4	10×5	10×6	10×7	10×8	10×9	10×10	10×11	$10 \times$
12											
11×1	11×2	11×3	11×4	11×5	11×6	11×7	11×8	11×9	11×10	11×11	$11 \times$
12											

Using bonds to 10 and 100

Sometimes, we can see and use number bonds to help us add, rather than the formal method.

I know that $60+40=100$
I know that $2+8=10$
$100+10=110$

Interpreting bar models

100			
25	25	25	25

$100=25+25+25+25 \quad 100=4 \times 25$
$100 \div 4=25 \quad 100=25 \times 4 \quad 100 \div 25=4$

Scaling facts by 10

If I know that $5+6=11$, then I know that 5 tens +6 tens $=11$ tens so $50+60=110$
If I know that $12-5=7$, then I know that 12 tens -5 tens $=7$ tens so $120-50=70$
If I know that $5 \times 4=20$, then I know that 5×4 tens $=20$ tens so $5 \times 20=200$

Counting in $\mathbf{2 s}$, 5 s and 10 s and applying this to scales and number lines

Fractions

I can count in tenths. I know that 10 tenths = 1 whole

| $\frac{1}{10}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

I can find unit fractions of an amount. I know the denominator tells me what to split my whole into.

$$
\begin{aligned}
& \frac{1}{5} \text { of } 35 \\
& 35 \div 5=7 \\
& \text { So } \frac{1}{5} \text { of } 35=7
\end{aligned}
$$

I understand what each part of the fraction notation means.
The whole has
been divided
into equal parts.

I know that when the numerator and denominator are the same, the fraction has a value of one.

Measure -

$10 \mathrm{~mm}=1 \mathrm{~cm}$ so $50 \mathrm{~mm}=5 \mathrm{~cm}$

Each interval is $5 \mathrm{~g} . \quad \underset{0}{\square} \quad 1$| \square | 1 |
| :--- | :--- | :--- | :--- | :--- |

Each interval is 10 g

Each interval is 50 g .

The interval is 100 ml
Therefore, the volume is $1 /$ and 500 ml .

The capacity of the
jug is 21 .

Perpendicular lines they make a right angle

Perimeter - the total distance around a shape

3 cm	7 cm	3 cm
	7 cm	

The perimeter for the rectangle is 20 cm

Right angles

